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Abstract—The estimation of acoustic images is a
computationally-intensive task for large microphone arrays. One
of the most popular algorithms for acoustic image estimation,
delay-and-sum beamforming (DAS), has low computational
complexity, but low spatial resolution. Several methods have
been developed to obtain higher resolution, among which
compressive beamforming, which is based on sparse estimation.
Although this method does achieve higher resolution, its
computational complexity is significantly higher than that of
DAS. In this paper we describe the use of the Kronecker array
transform (KAT) to accelerate DAS and specific algorithms for
sparse estimation, in particular matching pursuit (MP) and the
spectral projected-gradient algorithm SPGL1. In addition, we
describe how the nonequispaced fast Fourier transform (NFFT)
can be used to provide further acceleration.

I. INTRODUCTION

Microphone arrays are widely used to map noise sources,
for example in the aircraft industry [1], [2], through the con-
struction of acoustic images. These are maps of the sound
intensities impinging on a microphone array as a function of
the direction of arrival [3]. In order to keep computational
complexity low, acoustic images are usually estimated using
beamforming algorithms, in particular delay-and-sum (DAS)
[4], [5], which linearly combines delayed versions of the signals
arriving at each microphone, so that signals coming from the
direction of interest are in phase. In order to form an acoustic
image, the procedure must be repeated for each direction of
interest.

Despite its simplicity, a problem with this technique is its
low spatial resolution due to sidelobes. Different approaches
were propose to solve this problem, for example, deconvolution
methods such as DAMAS and DAMAS2 [6], [7], as well as
covariance-fitting methods, which rely on regularized optimiza-
tion algorithms [4], [8]. Although these algorithms give good
results, they require that the sound sources be uncorrelated and
are computationally intensive, particularly for large arrays and
high image resolutions. This former constraint (uncorrelated
sources) was removed in the DAMAS-C algorithm and in the
covariance-matrix fitting (CMF) method of [4], but the problem
of computational complexity largely remained.

With the aim of reducing the computational complexity
for these methods, [8], [9] introduced the Kronecker Array
Transform (KAT), essentially a way of taking advantage of the
structure that arises in the problem when the array is planar and
the microphones are placed on a rectangular grid (“separable”
arrays). The original KAT of [9] was designed for methods
based on the autocovariance matrix of the Fourier transform
of the microphone signals (such as DAMAS2 and CMF) [8].

Additionally, [9] described how the nonequispaced fast Fourier
transform (NFFT) [10] can be used (alone or in conjunction
with the KAT) to further accelerate the computations. The
restriction to separable arrays excludes the application of
the KAT with arrays with more complex structures, such as
multi-arm logarithm spiral arrays [11]. However, [8] shows
that, when using either deconvolution or CMF methods, the
performance obtained with non-uniform separable arrays is
comparable to that obtained with spiral arrays.

More recently, [12] introduced the compressive beamform-
ing algorithm, which uses regularized optimization techniques
(using the ℓ1 norm) to avoid using the autocorrelation matrix
of the microphone signals, and thus eliminates the necessity of
uncorrelated sources. A generalized version of the KAT was
proposed for compressive beamforming in [13], allowing sub-
stantial reduction in computational complexity, as explained in
more detail in the next section. Note that the generalized KAT
can also be used to accelerate standard DAS computations,
under the restriction of using a separable array.

In this paper we describe how the NFFT can be used to
accelerate computations for DAS and compressive beamform-
ing, alone or combined with the generalized KAT, and estimate
computational gains when different optimization algorithms
(such as Matching Pursuit — MP [14] — and the spectral
projected-gradient algorithm known as SPGL1 [15]) are used
for solving the sparse estimation problems.

II. IMAGING ALGORITHMS

We assume we have an array with M microphones placed
at positions pm ∈ R3. We are interested in estimating the
signals (or signal powers) at a frequency ωk arriving from a set
of directions un. The directions are parametrized in u-space
[5], that is, we assume that ((·)T denotes transposition)

un =
[
ux,n uy,n

√
1− u2

x,n − u2
y,n

]T
, (1)

where 0 ≤ u2
x,n + u2

y,n ≤ 1.

A. Signal model

Let x(ωk) = [x0(ωk) . . . xM−1(ωk)]
T

be a vector
collecting the discrete Fourier transforms (DFT) of each mi-
crophone at a single frequency ωk, computed from a length-
B block of the time-domain signals arriving at the array. We
approximate the sound field at the array by a superposition of
plane waves, each one arriving from one of the chosen look
directions un. In this case, x(ωk) is given by [3], [16]

x(ωk) = V (ωk)y(ωk) + η(ωk), (2)



where y(ωk) = [y0(ωk) y1(ωk) · · · yN−1(ωk)]
T

represents
the source signals in the frequency domain and η(ωk) rep-
resents frequency-domain noise. The array manifold matrix
V (ωk) = [v(u0,ωk) v(u1,ωk) · · · v(uN−1,ωk)], of size
M × N , describes the transfer function between the source
arriving from un and the sensor at pm, at frequency ωk.

Assuming that the sources are in the far field, the array
manifold vector for source n is then given by

v(un,ωk) =
[
ej(ωk/c)u

T
np0 · · · ej(ωk/c)u

T
npM−1

]T
. (3)

Please note that in the remaining of this manuscript we omit
the dependency on ωk in V (ωk), y(ωk) and x(ωk) in order
to simplify notation.

B. Spatial filtering: Conventional beamformer

Our problem is to estimate the N×1 vector y from the M×
1 vector x, in which in general M ≪ N . Due to its simplicity,
the most commonly applied methods are the delay-and-sum
(DAS) beamformer [5], [17], [18], which can be mathematically
modeled as a weighted sum of the signals captured by the

microphones, i.e., ŷ = wH x, where w = [w1 · · · wM ]
T

is a complex weight vector. DAS compensates for the relative
delay at each sensor for waves arriving from a given direction,
and averages the aligned signals:

wDAS(u) =
1

M
v(u) =

v(u)

vH(u)v(u)
. (4)

To obtain the acoustic image, a different beamformer is applied
for each direction un in our grid. This is equivalent to

ŷ =
1

M
V Hx, (5)

and the sound intensities are approximated either directly by
|[ŷ]n|

2
, where [ŷ]n denotes the n-th entry of ŷ, or by an average

computed from several signal blocks.

C. Covariance-matrix fitting (CMF)

In CMF methods, we first estimate the autocovariance
matrix of the microphone signals, S = E{xxH},from several
blocks of the input signals. From (2),

S = V E{yyH}V H + E{ηηH}. (6)

Assuming that the sources are uncorrelated ( [4] relaxes
this condition), the source autocovariance matrix E{yyH} =
diag(Yn) is diagonal, so we can write [9]

S =
N−1∑

n=0

Ynv(un)v
H(un) + E{ηηH}, (7)

where Yn are the pixels of the acoustic image we wish to
estimate. Applying the vec operator (which stacks the columns
of a matrix one at the top of the other) to (7) and using
Kronecker product properties [19], we obtain [9]

vec(S) = A col(Yn) + vec
(
E{ηηH}

)
. (8)

Defining s = vec(S), z = col(Yn), σ = vec
(
E{ηηH}

)
and

A
∆
= [v∗(u0)⊗ v(u0) . . . v∗(uN−1)⊗ v(uN−1)] ,

we obtain

s = Az + σ, (9)

where ⊗ denotes the Kronecker product, (·)∗ denotes complex
conjugate, and matrix A is M2 ×N .

The covariance-matrix fitting method consists of finding a
solution ẑ to (9) through a regularized optimization problem.
The solution proposed in [4] uses ℓ1 regularization:

ẑ = argmin
z

∥Az − s∥22 s.t. ∥z∥1 ≤ β, (10)

where β is a regularization constant. This approach is adequate
for sparse images. [8] uses a slightly modified optimization
problem, in order to use the SPGL1 package [15]

ẑ = argmin
z

∥z∥1, s.t. ∥Az − s∥22 ≤ σ2
0 , (11)

where the regularization term σ2
0 depends on an estimate

of ∥σ∥22 (related to the noise variance). Another possibility
described in [8] is the use of total variation (TV) regularization,
which would be adequate for smooth images. Although our
results can also be applied to this case, due to page restrictions
we do not consider TV regularization in this paper.

D. Compressive beamforming

CMF techniques work well, but the introduction of the
autocovariance matrix results in large matrices (such as in
(9)), and the treatment of correlated sources is cumbersome.
Beamforming techniques are robust to noise and fast, but suffer
from low resolution and the presence of sidelobes [4], [8], [12].
To counter these effects, a recent work proposes to estimate
directly y (instead of the image z) as a ℓ1-norm minimization
problem [12], that is, solving

ŷ = argmin
y

∥y∥1, s.t. ∥V y − x∥22 ≤ σ2
1 , (12)

where again σ2
1 is a regularization term, whose choice depends

on the noise variance.

We describe in the next section the Kronecker array
transform, which was introduced to accelerate computations
required for the solution of regularized optimization problems
such as (11) and (12). These optimization problems are solved
iteratively [14], [15], and for large arrays, the calculation bot-
tleneck usually lies in matrix-vector products such as Az and
AHs (for (11)) or V y and V Hx (for (12)) [8]. The original
KAT was designed to accelerate the solution of CMF problems
involving A [9]. More recently, the KAT was extended to
compressive beamforming problems such as (12) [13].

III. KRONECKER ARRAY TRANSFORM

The KAT is based on decomposing matrices V and A
in smaller matrices using Kronecker products. The Kronecker
product was already used to reduce the complexity in the
solution of certain linear systems of equations in [20], [21].
The KAT, on the other hand, accelerates matrix-vector compu-
tations.

The KAT requires an array in which the M microphones
are placed on a planar, rectangular grid. Assuming without loss



of generality that the array is placed horizontally, this means
that the microphone coordinates p0, · · · ,pM−1 ∈ R3 satisfy

pℓ+iMy = [px(ℓ) py(i) 0]
T
, (13)

where 0 ≤ ℓ ≤ Mx − 1, 0 ≤ i ≤ My − 1, M = MxMy and
px(ℓ) and py(i) are the x- and y-coordinates.

The look directions must also be chosen following a
rectangular grid, that is, we want to estimate the power of
the signals arriving at the array from directions u0, . . . ,uN−1,
such that

uq+rNy =
[
ux(q) uy(r)

√
1− u2

x(q)− u2
y(r)

]T
, (14)

where −1 ≤ ux(q), uy(r) ≤ 1, 0 ≤ q ≤ Nx − 1, 0 ≤ r ≤
Ny−1 and N = NxNy is the total number of look directions in
which we are interested. Note that only directions with u2

x(q)+
u2
y(r) ≤ 1 make physical sense.

A. Kronecker factorization

When both the microphone positions pm and the look
directions un are chosen in the form of rectangular grids (i.e.,
they satisfy (13) and (14)), [13] shows that the array manifold
matrix V can be factored in terms of smaller matrices V x and
V y using the Kronecker product [19].

V = V x ⊗ V y, (15)

where the (ℓ, q)-th element of V x and the (i, r)-th element of
V y are

V x[ℓ, q] = e
jωkux(q)px(ℓ)/c, (16a)

V y[i, r] = e
jωkuy(r)py(i)/c. (16b)

Relation (15) follows directly from substituting (13) and (14)
in the definition of the (m,n)-th element of V

V [m,n] = e
jωku

T
npm/c = e

jωkux(q)px(ℓ)/ce
jωkuy(r)py(i)/c, (17)

where m = ℓ + iMx, n = q + rNx.

A similar decomposition is described in [9] for matrix
A. Since application of the original KAT for CMF problems
is thoroughly described in [8], we concentrate here on the
application of the generalized KAT described in [13] to the
compressive beamforming problem (12). The results in Sec-
tions III-B–III-D are proven in [13].

B. Direct Fast Transform

Consider a matrix-vector product of the form x̂ = V ŷ.
Directly computing the product requires 4MN real multipli-
cations and 4MN − 2M real additions. On the other hand,
substituting (15) results in

x̂ = (V x ⊗ V y) ŷ. (18)

Using the well-known Kronecker product identity [19]

vec(DZCT ) = (C ⊗D) vec (Z) , (19)

we rewrite (18) as

X̂ = V yŶ V T
x , (20)

where x̂ = vec(X̂) and ŷ = vec(Ŷ ). The output matrix

X̂ ∈ CMy×Mx contains the values of x̂ arranged in the

same geometrical disposition as the sensors in the array, with
the columns of the matrix representing the vertical y-axis
and the rows of the matrix representing the horizontal x-axis.
The same is valid for the signal matrix Ŷ ∈ CNy×Nx , that
contains all values of ŷ arranged in the same geometrical
disposition as the scan grid. The total number of operations
now depends on the order the operations are performed. Com-
puting Ŷ V T

x requires 4MxNxNy = 4MxN real multipli-
cations and 4MxN − 2MxNy real additions. The computa-

tion of V y

(
Ŷ V T

x

)
requires 4MNy real multiplications, and

4MNy−2Mx real additions, so the total number of operations
required for (20) is 4MxN + 4MNy real multiplications, and
4MxN+4MNy−2MxNy−2Mx real additions if we compute(
Ŷ V T

x

)
first. Using

(
V yŶ

)
V T

x requires 4MyN + 4MNx

real multiplications, and 4MyN+4MNx−2MyNx−2My real
additions. Assuming Mx = My and Nx = Ny , both options
have the same complexity, and the gain in number of operations
(considering only multiplications) is

γKAT =
4MN

4M1/2N + 4MN1/2
≥

1

2
min{M1/2, N1/2}. (21)

C. Adjoint Fast Transform

To speed-up the calculation of DAS (5) we can apply (15)
to the adjoint matrix-vector product ŷ = V Hx, resulting into

ŷ = (V x ⊗ V y)
Hx, (22)

which can also be rewritten in a fast form using identity (19),
such that

Ŷ = V H
y XV ∗

x. (23)

Note that this has the same computational cost as the direct
transform.

D. Direct-Adjoint Fast Transform

Combining (18) and (22) we write the direct-adjoint matrix-
vector product as

ŷ = V HV y = [(V H
x V x)⊗ (V H

y V y)]y. (24)

Now, applying identity (19), we obtain the fast transform form
given by

Ŷ = V H
y V yY V T

xV
∗

x. (25)

This implementation is especially interesting when Mx

and My are sufficiently large in comparison to Nx and Ny ,

because it can be evaluated as Ŷ = (V H
y V y)Y (V T

xV
∗

x), with

precomputed versions of (V H
y V y) and (V T

xV
∗

x).

IV. FURTHER ACCELERATION WITH THE NFFT

The non-equispaced fast Fourier transform (NFFT) is an
(approximate) method for efficient evaluation of sums of the
form [10]

c(g1, g2) =
∑

h1,h2∈IH

d(h1, h2)e
−j2π(h1w1,g1+h2w2,g2 ), (26)

where g1, g2 = 0, 1, . . . , G − 1, IH is a set of H integers in
the interval

[
−NH

2 , NH

2

)
, NH ≥ H is an even positive integer,

the wg1 , wg2 are real numbers, and the d(h1, h2) are complex.



Note that the elements of IH need not be uniformly spaced.
The NFFT was used in [9] to accelerate the matrix-vector
products that appear in the CMF methods. Here we extend this
result to matrix-vector products involving matrix V , by itself
or in conjunction with the KAT. The computational complexity
depends on the desired accuracy ϵ, and is of the order of
O(H logH + | log ϵ|dG), where d = 2 for the case of two-
dimensional NFFTs as in (26), or d = 1 for one-dimensional
NFFTs. An algorithm with the same asymptotic complexity is
available for the adjoint problem

d̂(h1, h2) =
G−1∑

g1,g2=0

c(g1, g2)e
j2π(h1w1,g1+h2w2,g2 ). (27)

Consider first the application of the NFFT directly to a
matrix-vector product V y. Consider element (m,n) from V
(17). If we choose the ux(q) and uy(r) as

ux(q) =
2

Nx

(
−
Nx

2
+ q

)
, uy(r) =

2

Ny

(
−
Ny

2
+ r

)
,

and define

w1,ℓ = −
ωk

2πc

Nx

2
px(ℓ), w2,i = −

ωk

2πc

Ny

2
py(i),

then the product V y is in the form of a two-dimensional
NFFT. The adjoint NFFT (27) can be used to accelerate the
computation of V Hx. The complexity is of order O(N logN+
| log ϵ|2M).

The NFFT can also be used in conjunction with the
KAT. In this case, when computing the product V yY V T

x ,
each row of Y V T

x corresponds to a one-dimensional NFFT,
with complexity O(Nx logNx + | log ϵ|Mx). Considering that
there are Mx such rows, and repeating the procedure for

each column of V y

(
Y V T

x

)
, the total complexity results

O (N logNx +MxNy logNy + | log ϵ|(MxNy +M)).

V. EXAMPLES OF APPLICATION

In this section we give a few examples of application of
the KAT, first directly to DAS, and later to two algorithms
used to solve sparse approximation problems: SPGL1 [15] and
matching pursuit (MP) [14].

A. DAS

DAS computations can be accelerated directly by using the
adjoint KAT, the adjoint NFFT or both in conjunction, since
DAS corresponds simply to the operation ŷ = V Hx. The
reduction in computational complexity is therefore given by
(21). Fig. 1a shows an example of DAS in a case with five
sources, Mx = My = 8, Nx = Ny = 64.

B. Matching pursuit

The matching pursuit algorithm [14, Table 1] is a method
for finding sparse solutions to linear systems of equations such
as V y ≈ x. In its initialization, we must evaluate V Hx
and V HV , which can be accelerated with the KAT and/or
the NFFT. The main loop contains only length-M scalar-
vector products and vector additions, which are relatively low-
cost and cannot be accelerated using either method. Without
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Fig. 1. Acoustic image examples, Mx = My = 8, Nx = Ny = 64. Top
left, DAS; top right, MP; bottom, SPGL1.

using either method, the total number of real multiplications is
4N2M+4NM+6NNit, where Nit is the number of iterations.
Using the KAT and assuming Nx = Ny and Mx = My, the
cost reduces to 4N3/2M + 4N2M1/2 +N1/2M +NM1/2 +
6NNit multiplications (the figures for additions are similar).
For M = 64 and N = 642 and assuming 600 iterations, this
results a gain of 7.8 (approximately M1/2) less computations.
Fig. 1b shows the same example as in Fig. 1a, but using MP.

C. SPGL1

SPGL1 is an advanced method for solving (12) [15]. The
main loop of the algorithm requires one matrix-vector product
by V and one matrix-vector product by V H . Together with
a projection operation requiring O(N logN ) operations, these
are the most computational-intensive operations in the algo-
rithms. The reduction in computational complexity obtained
by using the KAT is expected to be of the order of M1/2

(assuming M ≪ N ). An example is shown in Fig. 1c.

VI. CONCLUSION

In this paper we described ways of accelerating algorithms
for estimation of acoustic images using a recently-proposed
version of the Kronecker array transform, applied to DAS
beamforming and to compressive beamforming. For compres-
sive beamforming, we described the computational gains to be
expected when using two different algorithms for the solution
of the sparse estimation problem: matching pursuit, a low-
complexity greedy algorithm, and the more advanced SPGL1
package. In addition, we described how the computations can
be further accelerated using the nonequispaced FFT.
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